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Abstract. It has recently been pointed out that a new class of subleading shape functions involving B-meson
matrix elements of non-local four-quark operators contributes at order ΛQCD/mb to B̄ → Xu l−ν̄ decay
distributions in the endpoint region. The corresponding functions fu(ω) and fv(ω) are estimated using the
vacuum-insertion approximation. A numerical analysis of various B̄ → Xu l−ν̄ decay spectra suggests that
these power corrections are very small, below present theoretical uncertainties due to other subleading
shape-function contributions.

Inclusive decays of B mesons into final states containing
light particles, such as B̄ → Xu l−ν̄ and B̄ → Xsγ, play an
important role in the extraction of the element |Vub| of the
quark mixing matrix. Experimental cuts in the analysis
of these processes restrict the hadronic final state to have
large energy, EX ∼ mB , but only moderate invariant mass,
MX ∼ √

mBΛQCD. In this region of phase space, the inclu-
sive rates can be calculated using a twist expansion, which
resums infinite sets of local-operator matrix elements into
nonperturbative shape functions [1,2]. It is well known that
the leading term in this expansion obeys a QCD factoriza-
tion formula [3], which separates contributions associated
with the hard scale mb, the jet scale

√
mbΛQCD, and the

soft scale ΛQCD. In recent work, the calculation of next-to-
leading perturbative corrections to the various components
in this formula has been completed [4, 5].

Remarkably, for the case of inclusive decay distributions
QCD factorization can be extended beyond the leading
order in the heavy-quark expansion. Using the formalism
of soft-collinear effective theory (SCET) [6,7], it has been
argued that a factorization theorem holds at every order in
ΛQCD/mb [8, 9]. Inclusive decay spectra therefore provide
an example of a class of observables that have a systematic
expansion in non-local string operators, built out of quark
and gluon fields with light-like separation connected by
Wilson lines. Nonperturbative hadronic physics is encoded
in forward B-meson matrix elements of these operators in
heavy-quark effective theory (HQET) [10]. The expansion
in string operators is a generalization of the conventional
(local) operator product expansion for correlation functions
at large (Euclidean) momentum transfer.

Recently, two groups have presented the first com-
plete analyses of subleading power corrections to arbitrary
B̄ → Xu l−ν̄ decay distributions in the shape-function re-
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gion [8,9]. In these studies, the QCD current–current cor-
relator, whose forward B-meson matrix element is related
to the hadronic tensor Wµν , is matched onto correlation
functions in SCET. These correlators are then expanded in
terms of non-local string operators in HQET. The resulting
expressions generalize (and in some cases correct) previous
results in the literature [11–13]. In particular, it was pointed
out that there exist some tree-level contributions involving
subleading shape functions defined in terms of non-local
four-quark operators, which had not been considered previ-
ously. Their contributions to arbitrary decay distributions
can be parameterized in terms of two functions fu(ω) and
fv(ω) defined as [9]

∫
dω e−iωt [fu(ω) T1 + fv(ω) T4]

= (−i)2
∫ t

0
dt1

∫ t

t1

dt2
〈B̄(v)|O4q(t1, t2, t)|B̄(v)〉

2mB
, (1)

where

O4q(t1, t2, t) (2)

= (h̄S)0 Γi /n γ⊥
ρ tA (S†q)t1n (q̄S)t2n γρ

⊥ /n Γj tA (S†h)tn

is a non-local string operator with fields ordered along
the light-cone defined by a vector n. Here h is a heavy-
quark field in HQET, q is a massless quark (q = u for
semileptonic decay), S denotes a soft Wilson line, and tA
are the generators of color SU(Nc). The light-like vector n
points in the direction of the final-state hadronic jet Xu. We
work in the B-meson rest frame, where vµ = (1, 0, 0, 0),
and take nµ = (1, 0, 0, 1). Perpendicular Lorentz indices
refer to the transverse plane orthogonal to v and n (see [9]
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for further definitions and notation). The traces

T1 =
1
4

tr
[
Γi /n Γj

1 + /v
2

]
,

T4 =
1
4

tr
[
Γi /nγ5 Γj

1 + /v
2

(/v − /n) γ5

] (3)

depend on the Dirac structures of the flavor-changing weak
currents J†

i = b̄ Γi q and Jj = q̄ Γj b in the definition of the
hadronic tensor, and Γi, Γj are, in principle, arbitrary Dirac
matrices. Expanding both sides of (1) in powers of t, one
finds that the functions fu and fv have zero norm and first
moment, whereas their second moments are given in terms
of a local four-quark matrix element,∫

dω ω2 [fu(ω) T1 + fv(ω) T4]

=
〈B̄(v)|h̄ Γi /n γ⊥

ρ tA q q̄ γρ
⊥ /n Γj tA h|B̄(v)〉

2mB
. (4)

The subleading shape functions fu and fv enter the de-
cay rates multiplied by a factor παs(µi) ≈ 1, where µi ∼√

mbΛQCD is an intermediate matching scale. Because of
the factor π, this perturbative coupling does not provide
a numerical suppression.

While the authors of [8,9] agree on the structural form
of the four-quark contributions, they differ in the assess-
ment of the expected numerical importance of their effects.
In [9], it is argued that the four-quark contributions are
expected to be suppressed with regard to other sublead-
ing shape functions. On the other hand, the authors of [8]
employ arguments based on naive dimensional analysis (in-
cluding counting factors of 4) to speculate that these ef-
fects may be the dominant source of ΛQCD/mb corrections,
which could lead to O(1) effects in some decay spectra. In
light of this controversy, it may be of some value to have
well-motivated, if model-dependent, estimates of the sub-
leading shape functions fu and fv. This is what we will
provide herein.

We first consider the case where the flavor of the light
quark q matches that of the B-meson spectator quark.
It is empirically well established that the magnitude of
the forward B-meson matrix elements of local four-quark
operators can be estimated by inserting the vacuum in-
termediate state, thereby factorizing them into products
of current matrix elements. This approximation is rou-
tinely used, e.g., in the analysis of lifetime ratios of beauty
hadrons [14, 15]. Depending on the color structure of the
operators, it is conventional to define

〈B̄q|h̄ Γ1 q q̄ Γ2 h|B̄q〉 ≡ Bi 〈B̄q|h̄ Γ1 q|0〉 〈0|q̄ Γ2 h|B̄q〉
and

〈B̄q|h̄ Γ1 tA q q̄ Γ2 tA h|B̄q〉 ≡ εi 〈B̄q|h̄ Γ1 q|0〉 〈0|q̄ Γ2 h|B̄q〉 ,

where the subscript i refers to different Dirac structures.
The large-Nc counting rules of QCD imply Bi = O(1) and
εi = O(1/Nc), and this hierarchy is preserved under renor-
malization. Theoretical work based on lattice QCD [16,17]

and QCD sum rules [18] suggests that the εi parameters
are indeed rather small, typically of order 0.1 or less. (More
specifically, [17] quotes ε1 ≈ ε2 ≈ 0.01 at a scale of 2.7 GeV,
whereas [18] finds ε1 ≈ −0.04 and ε2 ≈ 0.06 at a scale of
1 GeV.) This is consistent with empirical findings. For in-
stance, at a renormalization point µ ≈ mb/2, the lifetime
ratio of charged and neutral B mesons can be written as [15]

τ(B+)
τ(B0)

≈ 1 + 0.044B1 + 0.003B2 − 0.74ε1 + 0.20ε2

!= 1.086 ± 0.017 , (5)

where the last result is the current experimental value. If
the εi parameters were much larger than of order 0.1, a
fine tuning would be required in order to avoid a large
deviation from the experimental value. On the other hand,
with Bi ≈ 1 and εi = O(0.1) it is easy to reproduce the
experimental result.

There appears to be no reason why color suppression
should be less effective for non-local four-quark operators
than for local ones. As a model, we are thus led to replace

〈B̄q(v)|O4q(t1, t2, t)|B̄q(v)〉
≈ ε 〈B̄q(v)|h̄(0) [0, t1] Γi /n γ⊥

ρ q(t1n)|0〉
× 〈0|q̄(t2n) [t2, t] γ

ρ
⊥ /n Γj h(tn)|B̄q(v)〉 , (6)

where [tk, tl] denotes a straight soft Wilson line connect-
ing the points tkn and tln, and ε is the color-suppression
factor. This ansatz completely specifies our model for the
subleading shape functions. Whereas the definitions of the
parameters Bi and εi introduced in [15] are completely
general, the introduction of the parameter ε in the equa-
tion above corresponds to a model hypothesis, because we
assume that ε is independent of the position arguments t1,
t2, t and of the Dirac structures Γi, Γj . Nevertheless, as we
shall see, our model provides an expression for the sublead-
ing shape functions fu and fv with all the right properties,
such as the correct support and moment relations, as far
as they are known. We expect that it predicts the rough
overall scale of the effect reliably. In fact, many analyses of
inclusive B decays are based on measurements of partial
decay rates over kinematical domains that fall in between
the shape-function region and the region where a conven-
tional operator product expansion can be applied [5]. In
such a situation, the dominant contributions to the decay
rates are associated with the lowest non-zero moments of
the shape functions. In the case of the four-quark shape
functions, the lowest non-zero moments are given by the
matrix element of the local four-quark operator in (4), for
which the vacuum-insertion approximation is certainly rea-
sonable.

The B → vacuum matrix elements of the non-local
quark bilinears in (6) can be expressed in terms of the lead-
ing light-cone distribution amplitude of the B meson [19],

〈0|q̄(t′n)[t′, t]/nΓh(tn)|B̄q(v)〉 (7)

= − ifBmB

2
tr

[
/nΓ

1 + /v
2

γ5

] ∫ ∞

0
dωφ+(ω)e−iωt′−i(Λ̄−ω)t,
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Fig. 1. Model predictions for the function
g(ω) obtained using Λ̄ = 0.63 GeV, corre-
sponding to mb = 4.65 GeV. The thick lines
represent the δ-function localized at ω = Λ̄

where we have used that the B meson in HQET carries
momentum Λ̄v, with Λ̄ = mB −mb. Throughout this note
we work at lowest order in perturbation theory, so that we
can ignore the scale dependence of the various objects in the
above equation. Taking into account that the distribution
amplitude φ+ is real, we obtain in our model

(−i)2
∫ t

0
dt1

∫ t

t1

dt2 〈B̄q(v)|O4q(t1, t2, t)|B̄q(v)〉

= ε
f2

Bm2
B

4
e−iΛ̄t tr

[
γ5

1 + /v
2

Γi /n γ⊥
ρ

]

· tr
[
γρ

⊥ /n Γj
1 + /v

2
γ5

]

×
∫ ∞

0
dω1

∫ ∞

0
dω2 φ+(ω1) φ+(ω2)

×
[

1
ω1ω2

+
1

ω1 − ω2

(
eiω1t

ω1
− eiω2t

ω2

)]
. (8)

The product of traces can be expressed in terms of the ob-
jects T1 and T4 defined earlier, using the fact that between
/n . . . 1

2 (1+/v) any Dirac matrix can be decomposed into the
basis 1, γ5, γµ

⊥. A straightforward calculation shows that

T1 + T4 =
1
4

tr
[
γ5

1 + /v
2

Γi /n γ⊥
ρ

]
· tr

[
γρ

⊥ /n Γj
1 + /v

2
γ5

]
.

(9)
Taking the Fourier transform of (1), we then obtain

fu(ω) = fv(ω) = −ε
f2

BmB

2
g(ω) , (10)

where

g(ω) = δ(Λ̄ − ω)
[∫ ∞

0
dω′ φ+(ω′)

ω′

]2

+
2φ+(Λ̄ − ω)

Λ̄ − ω
P

∫ ∞

0
dω′ φ+(ω′)

Λ̄ − ω − ω′ . (11)

P denotes the principal-value prescription. The function
g has support on the half-interval −∞ < ω ≤ Λ̄, as is
indeed required for all shape functions [1, 2]. Its first few
moments are

∫
dω g(ω) = 0 ,

∫
dω ω g(ω) = 0 , (12)

∫
dω ω2g(ω) = 1 .

The first two conditions ensure that the subleading shape
functions fu and fv have vanishing norm and first moment,
as required on general grounds [9].

To have some explicit models at hand, we adopt two
forms of the B-meson light-cone distribution amplitude
motivated by the QCD sum rules [19,20], namely

φGN
+ (ω) =

ω

ω2
0

e−ω/ω0 ; ω0 =
2
3

Λ̄ ,

φBIK
+ (ω) =

2ω2
0ω

(ω2 + ω2
0)2

; ω0 =
8
3π

Λ̄ ,

(13)

where the relation between ω0 and Λ̄ is implied by the
equations ofmotion. Introducing the dimensionless variable
z = (Λ̄ − ω)/ω0 = ω̂/ω0 ≥ 0, we obtain

gGN(ω) =
1
ω3

0

[
δ(z) − 2e−z + 2z e−2z Ei(z)

]
,

gBIK(ω) =
1
ω3

0

[
π2

4
δ(z) (14)

+
8

(1 + z2)4
(
z ln z +

z

2
(1 + z2) − π

4
(1 − z2)

)]
,

where Ei(z) = − P
∫ ∞

−z
dt e−t/t is the exponential-integral

function. The variable ω̂ = Λ̄−ω is the most convenient one
when calculating decay spectra, because it is independent
of the definition used for the b-quark mass [5]. A graphical
representation of these two functions is shown in Fig. 1.
Notice the rapid fall-off of the model functions for values
of ω away from the endpoint. For the first model, this
reflects the assumed exponential fall-off of the distribution
amplitude φ+. But even in the second model, for which
φ+ has only a power-like fall-off, the function g decreases
quickly in magnitude.

So far, we have assumed that the light quark q is con-
tracted with the spectator quark in the B meson. However,
this is not always possible (e.g., if they have different flavor),
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Fig. 2. Model predictions for the partial B̄ → Xu l−ν̄ rate fractions with cuts on El, P+, and sH , respectively. The dashed line
shows the leading-order result, while the two solid lines include the contributions from four-quark shape functions, evaluated
setting ε = 1

and one may entertain the possibility that the light-quark
pair in the operator O4q is produced from the vacuum. In
this case, a possible factorization model is to write

〈B̄(v)|(h̄S)0 Γ1 tA (S†q)t1n (q̄S)t2n Γ2 tA (S†h)tn|B̄(v)〉
≈ B 〈B̄(v)|[(h̄S)0 Γ1 tA

]i

α

[
Γ2 tA (S†h)tn

]j

β
|B̄(v)〉

× 〈0|[(S†q)t1n

]i

α

[
(q̄S)t2n

]j

β
|0〉 , (15)

where B is a bag parameter, and we have left the Dirac
structures arbitrary for the moment. Lorentz and gauge
invariance dictate that

〈0|[(S†q)t1n

]i

α

[
(q̄S)t2n

]j

β
|0〉

= − δij

4Nc
〈q̄q〉 [1 + iΛh(t2 − t1)/n]αβ , (16)

where 〈q̄q〉 is the local quark condensate, and Λh is a had-
ronic parameter. From above, we now obtain in our model

〈B̄(v)|(h̄S)0 Γ1 tA (S†q)t1n (q̄S)t2n Γ2 tA (S†h)tn|B̄(v)〉

= − B CF

4Nc
〈q̄q〉

[
〈B̄(v)|h̄(0) [0, t] Γ1 Γ2 h(tn)|B̄(v)〉 (17)

+ iΛh(t2 − t1) 〈B̄(v)|h̄(0) [0, t] Γ1 /n Γ2 h(tn)|B̄(v)〉
]
.

Applying this formula to the specific case of the operator
in (1), for which Γ1 = Γi /n γ⊥

ρ and Γ2 = γρ
⊥ /n Γj , we see

that the Dirac structures Γ1 Γ2 and Γ1 /n Γ2 both vanish
due to /n2 = 0. Therefore, the non-valence contributions
vanish in the vacuum-insertion approximation.

Let us briefly discuss the phenomenological implica-
tions of our results by considering three decay spectra in
semileptonic B̄ → Xu l−ν̄ decay, referring to [9] for details
and derivations. In all cases we show the contributions of
the leading-order shape function Ŝ(ω̂) and of the four-quark
shape functions as calculated in our model, ignoring other
subleading shape-function contributions, which have al-
ready been discussed in [9]. In our model, only decay distri-
butions of charged B mesons are effected by the four-quark
contributions. Of particular interest for a measurement of

|Vub| are the spectra in the variables El (charged-lepton
energy), P+ (hadronic energy minus momentum), and sH

(hadronic invariant mass squared). The corresponding nor-
malized distributions are given by

1
Γ

dΓ

dEl
= 4

mB−2El∫
0

dω̂

mB − ω̂

[
Ŝ(ω̂) + 3επαsf

2
B ĝ(ω̂)

]
,

1
Γ

dΓ

dP+
= Ŝ(P+) +

2
3

επαsf
2
B ĝ(P+) , (18)

1
Γ

dΓ

dsH
=

1
mB

∞∫
sH/mB

dω̂

ω̂
F

(
ω̂,

sH

mBω̂

)
,

where ĝ(ω̂) = g(Λ̄ − ω̂), and in the latter case

F (ω̂, r) = 2r2(3−2r) Ŝ(ω̂)+4r(1−r) επαsf
2
B ĝ(ω̂) . (19)

Note that the contribution to the charged-lepton spectrum
is much larger than that in the other two cases. We have
studied the numerical impact of the four-quark contribu-
tions to these spectra using the model functions in (14)
with Λ̄ = 0.63 GeV and the default choice for the leading-
order shape function from [9]. We take fB = 200 MeV for
the B-meson decay constant and αs = 0.3 for the strong
coupling at the intermediate scale. Even without assuming
significant color suppression the effects are very small. For
ε = 1, sizable distortions of the P+ and sH spectra oc-
cur below P+ ≈ 0.5 GeV and sH ≈ 1.5 GeV2, while those
of the charged-lepton energy spectrum are located above
El ≈ 2.2 GeV. For more realistic values |ε| 
 1, the ef-
fects are even smaller. Varying the input parameters within
reasonable limits does not change this conclusion. The four-
quark contributions are proportional to the combination
επαsf

2
B/Λ̄3 times a dimensionless function of the ratio ω̂/Λ̄.

Assuming fB = (200±30) MeV and Λ̄ = (0.63±0.07) GeV,
we have επαsf

2
B/Λ̄3 = (0.15 ± 0.07)ε GeV−1, where the

parametric uncertainty can be absorbed into our ignorance
about the color-suppression factor ε.

Figure 2 shows results for the partial rate fractions ob-
tained by integrating the spectra in (18) over El ≥ E0 =
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(mB − ∆E)/2, P+ ≤ ∆P , and sH ≤ s0 = mB∆M , where
the quantities ∆i are chosen such that in all three cases
the charm background starts at∆i = m2

D/mB ≈ 0.66 GeV.
The effects of the four-quark shape functions are included
under the extreme assumption of no color suppression
(ε = 1). In reality, we expect their effects to be signif-
icantly smaller. If we consider the partial rate fractions
obtained by integrating the spectra over the phase space
not contaminated by charm background, we find that the
largest effects in the two models lead to

FEl
= (6.5 + 1.4ε)% , FP+ = (60.9 − 2.3ε)% ,

FsH
= (80.6 − 0.7ε)% . (20)

In the latter two cases these corrections are negligible even
if the color-suppression factor ε is not particularly small.

For comparison, we note that the authors of [8] esti-
mate (using naive dimensional analysis, and ignoring color
suppression) that the impact of four-quark shape functions
on the charged-lepton energy fraction could be as large as
180% of the leading term. Even for ε = 1 this would be
an order of magnitude bigger than our estimate. The main
reason is that these authors include an enhancement factor
g2

s = 4παs ≈ 4 in their estimate of the power-suppressed
effects, as opposed to, say, παs ≈ 1. Clearly, dimensional
analysis cannot tell the difference between these two factors.
The precise numerical coefficients multiplying the four-
quark shape-function contributions to a given observable
can only be determined by explicit calculation, as done in
(18). Note that, following the reasoning of [8], one would
associate an enhancement factor g2

s = 4παs ∼ 12 with
soft-gluon exchange (for which αs ∼ 1), which would be
wrong, since the corresponding powers of gs are already
included in what is conventionally called ΛQCD.

In summary, we have presented a simple, but well-
motivated model for the four-quark subleading shape func-
tions fu(ω) and fv(ω), which contribute at order ΛQCD/mb

to inclusive B-decay spectra in the endpoint region. We
have shown that, in the vacuum-insertion approximation,
non-zero contributions only arise from four-quark oper-
ators for which the light-quark flavor matches that of
the B-meson spectator quark. Vacuum pair production of
the light-quark pair, although not suppressed on general
grounds, does not contribute due to the Dirac structure of
the relevant operators. The result for the subleading shape
functions fu and fv is given by a color-suppression factor
times a double-convolution integral over a product of twoB-
meson light-cone distribution amplitudes. Using two simple
models for this function, we have obtained explicit forms
for the subleading shape functions, which are compatible
with all known constraints from analyticity and moment
relations. The corresponding impact on the decay distri-
butions in semileptonic B̄ → Xu l−ν̄ decays is found to be
negligible. While the results reported here are admittedly
model-dependent, we believe that they support our earlier
claim [9] that these four-quark contributions are likely to
be smaller than other subleading shape-function effects.
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